

Mathematics and Numeracy Calculation Policy

Prepared by: Carol Jackson and Michelle Bull

June 2017

Nominated Governor:

Andy Murphy

Review date: June 2019

Numeracy & Mathematics Calculation Policy

Policy Statement

Numeracy/ Mathematics should be an integral part of all lessons with focus on children achieving a high standard of numeracy skills to become as independent as possible when leaving school.

Environment

Heltwate School provides a rich learning environment in which all children can learn and achieve, alongside enjoying their education and time spent here. Resources are well planned and used to support all levels of ability. Expectations are high to ensure behaviours in class allow for all children to learn.

Introduction

The following calculations policy has been written in line with the programmes of study taken from the National Curriculum for Mathematics (2014). This policy provides guidance on the calculation strategies, methods and progression. It aims to help parents to help their children, as well as provide guidelines for teachers to provide consistency in the teaching of mathematics across the school. Although not exhaustive, it outlines the key strategies taught across our school.

Our Aims

Through the Mathematics National Curriculum, we aim to ensure that all pupils:

- 1. Develop the basic mathematical skills through varied and frequent practice with increasingly complex problems over time.
- 2. Reason mathematically by following a line of enquiry
- 3. Can solve problems by applying their mathematics to a variety of routine and non-routine problems including breaking down problems into a series of simpler steps and persevering in seeking solutions.

This policy will ensure consistency and progression in our approach to the learning and teaching of calculations across the school. It will enable our children, teachers and parents to work in partnership, developing an efficient, reliable, formal written method of calculation for all operations and to use these methods accurately with confidence for understanding.

Written Calculations Stages of Development

Children should only progress to these stages if they are ready. In the same respect some children may be ready to move on quicker – although it is important that children are secure with the method they are working on before moving onto the next stage.

See attached pages for details of the stages to be taught.

Addition +

3 + 2 = 5

Introduction of symbols to form number sentences

numberline

count on by bridging

through 10

is

hundred square

Dienes' Apparatus

20

71 22 71 24 28 26 27 78 24

 H1
 B2
 G3
 B4
 B1
 86
 B7
 B8
 84
 96

 11
 42
 92
 94
 95
 96
 47
 98
 94
 100

Addition of 2digit numbers using practical resources

32 + 26

1	2	3	4	5	6	7	8	9	:20
п	52	13	34	35	10	17	18	19	50
21	22	23	24	25	65	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	4	43	44	45	46	47	48	49	50
51	52	-60	-	- 15	50	-	-58	59	80
61	62	63	64	65	86	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	04	95	96	- 10	98	99	100

Counting on in jumps of ten and one using a hundred square

Adding by partitioning into tens and ones

26 + 32 = 20 + 30 + 6+2 = 58

Adding by partitioning into tens and ones **10 TO 26 + 32 50 + 8 = 58**

e.g. adding 9 / 19 / 29 or 8 / 28 / 38

26 + 19 = 45

Adding by compensation

26 + 20 = 46

45 + 17

Begin to use expanded written methods

7

Introduce practically, e.g.

46 - 1 = 45

Introduce practically, e.g.

Progress to		14	45 + 3	127		т	U
expanded written		н	т	U			
methods		100	40	5			
involving	+	100	20	7			
hundreds		200 -	+ 60 -	+ 12	272		

Reinforce understanding with use of arrow cards

Addition using	264 + 148
the compact	
written	HTU
method	2 64
involving	ALL REAL PROPERTY.
carrying,	+ 1 48
adding the	4 12
ones first	1 1
	3364 + 247
Addition using	
the compact	HTU
written	3 3 64
method	3 3 04
progressing to	+ 2 47
thousands	3 6 11
	1 1
Addition	3.56 + 2.47
involving	
decimals	3.56
using compact	and the second second
written	+ 2.47
methods	6.03
	1 1

Addition with negative numbers

-15 + 6 = -9

Stage 1

9

Subtraction -

	1	2	3	4	8	6	7	8	: 9	10
	11	12	13	34	15	10	17	38	19	20
ounting back	21	22	23	24	25	26	27	28	29	90
jumps of one	31	32	33	34	35	36	37	38	39	40
	41	42	43	44	45	46	47	48	49	50
ing a hundred	51	52	53	54	55	56	57	58	59	60
uare	61	50	63	64	65	66	67	68	69	70
	71	72	73	74	75	76	77	78	79	80
	81	82	83	84	85	86	87	88	89	90
	91	92	93	94	95	.96	97	98	99	100

27 - 6

Counting back in jumps of ten and one using a hundred square

58 - 26

1	2	2	4	5	.0	7	8	9	10
22	15	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	4	43	44	45	46	47	48	49	50
51	52	53	54	-55	56	57	-58	59	60
61	62	63	64	65	ô6	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

45

22

25

	66 - 54	Introduce practically, e.g 66
Subtraction using expanded written methods in a vertical layout	T U 60 6 - <u>50 4</u>	take away 54
	<u>10+2</u> → 12	leaves

ed as

Se	Subtraction using compact Written method	81 – 57	
L	Written method	ΤU	
		7 8 ¹ 1	2
		- 57	→24
		2 4	

	403 - 127
Subtraction using compact written method exchanging across columns	$ \begin{array}{r} T & U \\ 3 4 9 0 3 \\ - \frac{1 \ 2 \ 7 \ 6 \ }{2 \ 7 \ 6 \ } $
Subtraction of decimal	£2.31 - £1.53
numbers to 2 decimal places	£ ¹ 2 ^{1,2} 3 ² 1
using compact	£1.53
written method	£0.78

Subtraction	
using negative	-12 - 4 = -16
numbers	

Multiplication x

times multiply multiplication

lots of repeated addition

array groups of product

Stage 1

e.g. pairs of socks

Counting in jumps – finding patterns using a hundred square

1	*	3	*	5	*	7		9	10
11	12	13	14	15	16	17	10	19	20
21	22	23	*	25	*	27	20	29	兼
31	*	33	兼	35	*	37	-10	39	40
41	42	43	4	45	46	47	48	49	蜂
51	12	53	*	55	46	57	碘	59	60
61	62	63	64	65	-	67	-	69	70
71	22	73	林	75	16	77	頂	79	60
81	42	83	-	85	-	87	60	89	-
91	92	93	94	95	*	97	98	99	100

Stage 2

Repeated addition using practical resources

Arrays – using practical resources

Drawing arrays using dots

Using arrays

Multiplying a 2-digit number by a 1-digit number:

Stage 3

	Multip	lying a 2-di	git numbe	r by a 1-d	igit number:	
It is important that children know that when multiplying by ten it <u>is</u>	x	20	3			
not just a matter of adding a zero! The digits move left, and a place holder (0) may	8	160	24	160 + 24 = 184		
have to be inserted.	Multip	lying a 3-di	igit numbe	r by a 1-d	g <mark>it num</mark> ber:	
Grid Method	x	100	20	3		
	6	600	120	18	= 738	
	2	Multiplyi	ng two 2-c	ligit numb	ers:	
	x	20	3			
	40	800	120		920	

Multiplying a 3-digit number by a 1-digit number:

+ 46

	246	
	<u>x 7</u>	
Expanded Column Method	42	(6 x 7)
	280	(40 x 7)
	1400	(200 x 7)
	1722	

Multiplying a 2-digit number by a 1-digit number:

	23	
Expanded	<u>x 7</u>	
Column Method	21	(3 x 7)
	140	(20 x 7)
	161	

Multiplying a 3 or 4-digit number by a 1-digit number:

12270 N2 102 / 1/27	246				
Contracted Column Method	<u>x 7</u>				
Column Method	1722				
	34				

Division ÷

divide division share group sort remainder left over

how many lots of repeated subtraction split

Stage 1

Sharing equally

Stage 2

Repeated

Subtraction

Stage 3

Dividing by partitioning

Sharing

representing remainders as fractions

Repeated subtraction of

chunks

72 ÷ 4:
40 ÷ 4 = 10
32 ÷ 4 = 8
$14 \div 3 = 4\frac{2}{3}$
•

Using a number line to take off chunks

74 ÷ 4 = 18 r2

Repeated subtraction of chunks, e.g.

Division by chunking	1 x 4 = 4 2 x 4 = 8 4 x 4 = 16 10 x 4 = 40 7 x 4 = 28	148 -40 108 -40 68 -40 28 -28 0	(10 x 4) (10 x 4) (10 x 4) (7 x 4)
		148 ÷ 4	= 10 + 10 + 10 + 7
		148 ÷ 4	= 37

Repeated subtraction of chunks, e.g.

		534		(20 x 17)
Division by chunking	1 x 17 = 17	-340		(
	2 x 17 = 34	194		(10 x 17)
	4 x 17 = 68	-170		(10 / 1/)
	10 x 17 = 170	24		(1 x 17)
	5 x 17 = 85	-17		(1 / 1/)
	20 x 17 = 340	7		
	÷ r	534 ÷ 17	=	20 + 10 + 1 r7
		534 ÷ 17	=	31 r7

560 ÷ 24:

				2	8	
	2	4	5	6	0	
Long division		2	4	8	0	24 x20
				8	0	
		3		7	2	24 x3
				En Mar	8	

560 ÷24= 28 r8

	318÷6				
Compact short division	6		5 ³ 1		
	3	18 ÷	3 =	53	
		56	0 ÷ 2	24	
Compact short division snowing answer		-		3	r8
with a	24	5	56	⁸ 0	
remainder	31	8 ÷ 3	3 = 5	53	

Glossary

Array- An ordered collection of counters, numbers etc. in rows and columns.

Commutativity- Multiplication and division are both commutative as they can be done in any order. Division and subtraction are not commutative.

Difference- The amount by which one number or value is greater than another, obtained by subtracting the smaller from the larger.

Hundred Square -The numbers 1 – 100 arranged in uniform rows and columns to aid the understanding of number and to assist with calculations.

Inverse operation - The inverse operation is that which reverses the effect of the other one. Addition and subtraction are inverse operations. Multiplication and division are inverse operations.

Logical - Using an approach that is structured, logical, clear and organised to solve a given problem or calculation.

Manipulatives - Manipulatives are objects which are designed so that a learner can perceive some mathematical concept by manipulating them. The use of manipulatives provides a way for children to learn concepts in a developmentally appropriate, hands-on way.

Mental Methods - Using methods and strategies in your head to solve a given problem.

Multiple - When two numbers are multiplied together, the result is called a multiple.

Number bonds - A pair of numbers with a particular total e.g. number bonds to ten are all pairs of whole numbers with the total10.

Number sentence - A mathematical sentence involving numbers. For example: 3 + 6=9.

Number line - A line where numbers are represented by points up on it.

Partition - To split a number into component parts. For example: the two-digit number 38 can be partitioned into 30 + 8 or 19 +19.

Place Value - The value of a digit that relates to its position or place in a number. For example: in 1482 the digits represent 1 thousand, 4 hundreds, 8 tens and 2 ones respectively.

Product - The result of multiplying two or numbers together.

Remainders:- What is 'left over' when one number cannot be exactly divided by another.