

Mathematics and Numeracy Calculation Policy

Prepared by: Carol Jackson and Michelle Bull
Nominated Governor:

June 2017
Andy Murphy

Numeracy \& Mathematics Calculation Policy

Policy Statement

Numeracy/ Mathematics should be an integral part of all lessons with focus on children achieving a high standard of numeracy skills to become as independent as possible when leaving school.

Environment

Heltwate School provides a rich learning environment in which all children can learn and achieve, alongside enjoying their education and time spent here. Resources are well planned and used to support all levels of ability. Expectations are high to ensure behaviours in class allow for all children to learn.

Introduction

The following calculations policy has been written in line with the programmes of study taken from the National Curriculum for Mathematics (2014). This policy provides guidance on the calculation strategies, methods and progression. It aims to help parents to help their children, as well as provide guidelines for teachers to provide consistency in the teaching of mathematics across the school. Although not exhaustive, it outlines the key strategies taught across our school.

Our Aims

Through the Mathematics National Curriculum, we aim to ensure that all pupils:

1. Develop the basic mathematical skills through varied and frequent practice with increasingly complex problems over time.
2. Reason mathematically by following a line of enquiry
3. Can solve problems by applying their mathematics to a variety of routine and non-routine problems including breaking down problems into a series of simpler steps and persevering in seeking solutions.

This policy will ensure consistency and progression in our approach to the learning and teaching of calculations across the school. It will enable our children, teachers and parents to work in partnership, developing an efficient, reliable, formal written method of calculation for all operations and to use these methods accurately with confidence for understanding.

Written Calculations Stages of Development

Children should only progress to these stages if they are ready. In the same respect some children may be ready to move on quicker - although it is important that children are secure with the method they are working on before moving onto the next stage.

See attached pages for details of the stages to be taught.

Addition +

more than addition
count on total
increase

join bigger together more

Stage 1
Begin to relate addition to combining

Find one more than a number

Adding using

Introduction
of symbols to
form number sentences

$$
3+2=5
$$

Develop

 understanding of addition as CountingDevelop understanding of addition as counting steps along a numberline

Stage 2

Developing knowledge and understanding of number bonds to10

Using bead strings to count on by bridging through 10

Understand

 that addition is commutative (can be done in any order)

$$
3+2=5
$$

or

$2+3=5$

Vary position of missing numbers in a number sentence

Counting on in jumps of one using a hundred square

Addition of 2-

 digit numbers using practical resources

Numicon

$$
32+26
$$

Counting on in jumps of ten and one using a hundred square

1.	2	3	4	5	4	7	8	9	30
11	12	13	14	15	10	IT	18	19	20
71	22	23	24	25	20	27	28	29	10
34	32	33	34	35	36	37	38	39	40
4.	?	43	44	45	46	47	4)	49	50
5t	52-	-80	-40	-45-	-50-	-80	-58	59	40
64	62	63	44	45	86	e7	68	69	70
71	72	73	74	75	76	T7	73	79	30
* 4	8	8)	94	45	80	ar	88	bs	30
91	ض2	93	94	75	96	97	98	99	100

Vary position of missing numbers in a number sentence

Addition using a blank number line (putting biggest number first)

Using a blank number line, add the ones in one jump (using the known fact
$6+2=8$)

Using a blank number line, adding the tens in one jump and the ones in one jump
$21+\square=43$

Adding by partitioning into tens and ones

Adding by partitioning into tens and ones

$$
26+32=20+30+6+2=58
$$

$50+8=58$

e．g．adding 9 ／ 19 ／ 29 or 8 ／ 28 ／ 38

$$
26+19=45
$$

Adding by

$$
26+20=46
$$

$46-1=45$
compensation

Stage 3

Begin to use expanded written methods	$45+17$		Introduce practically，e．g	
			T	U
	T U		\％	葸品
	$\begin{array}{r} 405 \\ +107 \end{array}$		\square	暑曋
	$\frac{10}{50+12}$	62	\％	${ }_{\text {ammarm }}^{\text {max }}$

Progress to
expanded written
methods
involving hundreds

$$
\begin{aligned}
& 145+127 \\
& \text { H T U }
\end{aligned}
$$

Reinforce

understanding with use of [200) 70) (2] \Rightarrow [7(72) arrow cards

Addition using the compact written method involving carrying, adding the ones first

Addition using
the compact
written
method progressing to thousands
$264+148$
involving
decimals
using compact
written
methods
$\mathbf{3 3 6 4} \mathbf{+ 2 4 7}$
HTU
264

$H T U$
264
+148
412
11

HTU
3364
$+\quad 247$
3611
11

$3.56+2.47$
HTU
3364

3611
$\begin{array}{r}3.56 \\ +2.47 \\ \hline 6.03 \\ \hline 11\end{array}$

Addition with
negative $\quad-15+6=-9$
numbers

Subtraction -

subtract subtraction	less less than	fewer count back
take away	minus	difference
take	reduce	how many left

Take away from groups of items

Find one less than a number

Take away using fingers
and other practical resources
(e.g. for 5-3)

Taking away by crossing out

$$
5-2=3
$$

Introduction of
Symbols to form
$5-2=3$
number sentences

Counting back on a number track

Counting back on a numbered numberline

Stage 2

Counting back in jumps of one using a hundred square

1	2	3	4	5	6	7	8	9	10
11	12	13	14	13	to	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	IT	38	39	± 0
41	42	4)	44	45	46	47	48	49	50
51	58	53	54	55	56	57	54	59	60
4.	62	63	\$4	65	56	67	6t	69	70
71	72	73	74	75	76	77	78	79	60
81	88	83	34	85	86	87	88	89	90
94	92	93	94	95	96	97	98	99	100

Using bead strings to count Back by bridging through 10

13-5

$13-3-2$

Dienes' Apparatus

Counting Straws

Subtraction using practical resources

Numicon

58-26

Counting back in jumps of ten and one using a hundred square

$$
45-23=22
$$

Counting back on a number line

Finding a difference by counting on using a numberline
...progressing to hundreds for more able children

$36-19=17$
Subtracting 9 /
19/29 or 8 / 28 / 38 by compensation

Stage 3

	$66-54$	
Subtraction	T	U
using expanded written	60	6
methods in a vertical layout	$\xrightarrow{-50} 4$	
	$\underline{10+2}$	

Introduce practically, e.g

led as

$$
403-127
$$

Subtraction of
decimal
numbers to 2
decimal places
using compact written method
£2.31-£1.53
$£^{1} 2^{12} \cdot 3^{2} 1$
£ 1.53
£ 0.78

Subtraction using negative numbers
$-12-4=-16$

Multiplication x

 times multiply multiplication
 lots of repeated addition
 array groups of product

Stage 1
e.g. pairs of socks

Grouping objects into equal groups

Counting in jumps - finding patterns using a hundred square

Stage 2

Repeated addition using practical resources

Arrays - using practical resources

$$
3 \times 5=5+5+5=15
$$

Drawing arrays using dots

Multiplying a 2-digit number by a 1-digit number:

x	20	3
4	80	24

It is important that children know that when multiplying by ten it is not just a matter of adding a zero! The digits move left, and a place holder (0) may have to be inserted.

Multiplying a 2-digit number by a 1-digit number:

Multiplying a 3-digit number by a 1 -digit number:

Grid Method

x	100	20	3
6	600	120	18

Multiplying two 2-digit numbers:

\mathbf{x}	20	3
40	800	120
2	40	6

966

Multiplying a 3-digit number by a 1-digit number:

Multiplying a 2-digit number by a 1-digit number:

Multiplying a 3 or 4 -digit number by a 1-digit number:

Contracted
 Column Method

 1722
 34

Division \div

divide
division
share

group sort remainder left over
how many lots of repeated subtraction split

Stage 1

Stage 2

Sharing using
e.g. counters

Sharing Showers

Grouping using Numicon

Grouping

$10 \div 3$

$9 \div 3$

e.g. How many 4's in 15 ?

Division using practical resources

Repeated Subtraction

Using a number line:

Stage 3

$$
72 \div 4:
$$

Dividing by partitioning

Repeated subtraction of chunks

Sharing representing remainders as fractions
partitoning
$40 \div 4=10$
$32 \div 4=8$

$$
14 \div 3=4 \frac{2}{3}
$$

Using a number line to take off chunks
$74 \div 4$

$74 \div 4=10+5+3+2$ $74 \div 4=18 \mathrm{r} 2$

Repeated subtraction of chunks, e.g.

$$
148 \div 4:
$$

$$
534 \div 17
$$

$$
560 \div 24:
$$

Long division

$560 \div 24=\quad 28 \quad r 8$

$\mathbf{3 1 8} \div \mathbf{3}=53$

Glossary

Array- An ordered collection of counters, numbers etc. in rows and columns.
Commutativity- Multiplication and division are both commutative as they can be done in any order. Division and subtraction are not commutative.

Difference- The amount by which one number or value is greater than another, obtained by subtracting the smaller from the larger.

Hundred Square -The numbers 1-100 arranged in uniform rows and columns to aid the understanding of number and to assist with calculations.

Inverse operation - The inverse operation is that which reverses the effect of the other one. Addition and subtraction are inverse operations. Multiplication and division are inverse operations.

Logical - Using an approach that is structured, logical, clear and organised to solve a given problem or calculation.

Manipulatives - Manipulatives are objects which are designed so that a learner can perceive some mathematical concept by manipulating them. The use of manipulatives provides a way for children to learn concepts in a developmentally appropriate, hands-on way.

Mental Methods - Using methods and strategies in your head to solve a given problem.
Multiple - When two numbers are multiplied together, the result is called a multiple.
Number bonds - A pair of numbers with a particular total e.g. number bonds to ten are all pairs of whole numbers with the total10.

Number sentence - A mathematical sentence involving numbers. For example: $3+6=9$.

Number line - A line where numbers are represented by points up on it.
Partition - To split a number into component parts. For example: the two-digit number 38 can be partitioned into $30+8$ or $19+19$.

Place Value - The value of a digit that relates to its position or place in a number. For example: in 1482 the digits represent 1 thousand, 4 hundreds, 8 tens and 2 ones respectively.

Product - The result of multiplying two or numbers together.
Remainders:- What is 'left over' when one number cannot be exactly divided by another.

